Эрмитов оператор - определение. Что такое Эрмитов оператор
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Эрмитов оператор - определение

Самосопряжённый оператор; Самосопряженный оператор; Симметрический оператор; Симметричные операторы
Найдено результатов: 113
Эрмитов оператор         

бесконечномерный аналог эрмитова линейного преобразования (см. Эрмитова форма). Линейный ограниченный оператор А в комплексном гильбертовом пространстве (См. Гильбертово пространство) и называется эрмитовым, если для любых двух векторов х и у этого пространства выполняется равенство (Ax, у) = (х, Ау), где (х, у) - скалярное произведение в Н. Примерами Э. о. являются интегральные операторы (см. Интегральные уравнения), для которых ядро К (х, у) задано в ограниченной области и является непрерывной функцией такой, что ;

в этом случае К (х, у) называется эрмитовым ядром. Понятие Э. о. обобщается и на неограниченные линейные операторы в гильбертовом пространстве. Э. о. играют значительную роль в квантовой механике, представляя удобный способ математического описания наблюдаемых величин, характеризующих физическую систему.

Эрмитов оператор         
В математике оператор A в комплексном или действительном гильбертовом пространстве \mathfrak H называется эрмитовым, симметрическим, если он удовлетворяет равенству (Ax,y)=(x,Ay) для всех x,y из области определения A. Здесь и далее полагается, что (x, y) — скалярное произведение в \mathfrak H.
Самосопряжённый оператор         

оператор, совпадающий со своим сопряжённым (см. Сопряжённые операторы). иначе называется эрмитовым. Теория С. о. возникла как обобщение теории интегральных уравнений с симметричным ядром, самосопряжённых дифференциальных уравнений, симметрических матриц и т. д. Примерами С. о. могут служить оператор умножения на независимое переменное в пространстве функций, заданных на всей числовой прямой и имеющих интегрируемый квадрат, оператор дифференцирования в том же пространстве и т. д.

Если функция К (х, у) непрерывна на квадрате а х b, ауb и К (х, у) = К (у, х), то интегральный оператор самосопряжён. Спектр С. о. (см. Спектр оператора) лежит на действительной оси. В квантовой механике физическим величинам соответствуют С. о., спектр которых даёт возможные значения этих величин. С. о. может быть в известном смысле представлен в виде интеграла, являющегося пределом линейных комбинаций попарно ортогональных проекционных операторов (См. Проекционный оператор) с действительными коэффициентами. См. Спектральный анализ линейных операторов, Операторов теория.

Оператор (физика)         
Оператор в квантовой механике — это линейное отображение, которое действует на волновую функцию, являющуюся комплекснозначной функцией, дающей наиболее полное описание состояния системы. Операторы обозначаются большими латинскими буквами с циркумфлексом наверху.
Операторы         
НЕКОТОРЫЙ КЛАСС ОТОБРАЖЕНИЙ В МАТЕМАТИКЕ
Тождественный оператор; Операторы; Нулевой оператор

в квантовой теории, математическое понятие, широко используемое в математическом аппарате квантовой механики (См. Квантовая механика) и квантовой теории поля (См. Квантовая теория поля) и служащее для сопоставления определённому вектору состояния (или волновой функции) ψ др. определённых векторов (функций) ψ'. Соотношение между ψ и ψ' записывается в виде ψ' = L̂ψ, где L̂ - оператор. В квантовой механике физическим величинам (координате, импульсу, моменту количества движения, энергии и т.д.) ставятся в соответствие О. L̂ (О. координаты, О. импульса и т.д.), действующие на вектор состояния (или волновую функцию) ψ, т. е. на величину, описывающую состояние физической системы.

Простейшие виды О., действующих на волновую функцию ψ(х) (где х - координата частицы), - О. умножения (например, О. координаты ,ψ = хψ) и о. дифференцирования (например, О. импульса , ψ =, где i - мнимая единица, ħ - постоянная Планка). Если ψ - вектор, компоненты которого можно представить в виде столбца чисел, то О. представляет собой квадратную таблицу - матрицу (См. Матрица).

В квантовой механике в основном используются линейные операторы (См. Линейный оператор). Это означает, что они обладают следующим свойством: если L̂ψ1 = ψ'1 и L̂ψ2 = ψ'2, то L̂(c1ψ1 + c2ψ2) = c1ψ'1 + c2ψ'2, где c1 и с2 - комплексные числа. Это свойство отражает Суперпозиции принцип - один из основных принципов квантовой механики.

Существенные свойства О. L̂ определяются уравнением L̂ψn = λnψn, где λn - число. Решения этого уравнения ψn называется собственными функциями (собственными векторами) оператора L̂. Собственные волновые функции (собственные векторы состояния) описывают в квантовой механике такие состояния, в которых данная физическая величина L имеет определённое значение λn. Числа λn называется собственными значениями О. L̂, а их совокупность - спектром О. Спектр может быть непрерывным или дискретным; в первом случае уравнение, определяющее ψ n, имеет решение при любом значении λn (в определённой области), во втором - решения существуют только при определённых дискретных значениях λn. Спектр О. может быть и смешанным: частично непрерывным, частично дискретным. Например, О. координаты и импульса имеют непрерывный спектр, а О. энергии в зависимости от характера действующих в системе сил - непрерывный, дискретный или смешанный спектр. Дискретные собственные значения О. энергии называются энергетическими уровнями.

Собственные функции и собственные значения О. физических величин должны удовлетворять определённым требованиям. Т. к. непосредственно измеряемые физич. величины всегда принимают веществ. значения, то соответствующие квантовомеханич. О. должны иметь веществ. собств. значения. Далее, поскольку в результате измерения физич. величины в любом состоянии ψ должно получаться одно из возможных собств. значений этой величины, необходимо, чтобы произвольная волновая функция (вектор состояния) могла быть представлена в виде линейной комбинации собств. функций (векторов) ψn О. этой физич. величины; др. словами, совокупность собств. функций (векторов) должна представлять полную систему. Этими свойствами обладают собств. функции и собств. значения т.н. самосопряжённых О., или эрмитовых операторов (См. Эрмитов оператор).

С О. можно производить алгебраич. действия. В частности, под произведением О. L̂1 и L̂2 понимается такой О. L̂ = 12, действие которого на вектор (функцию) ψ даёт L̂ψ = ψ'', если L̂2ψ = ψ' и L̂1ψ' = ψ''. Произведение О. в общем случае зависит от порядка сомножителей, т. е. 12 21. Этим алгебра О. отличается от обычной алгебры чисел. Возможность перестановки порядка сомножителей в произведении двух О. тесно связана с возможностью одновременного измерения физических величин, которым отвечают эти О. Необходимым и достаточным условием одновременной измеримости физических величин является равенство L̂12 = 21 (см. Перестановочные соотношения).

Уравнения квантовой механики могут быть формально записаны точно в том же виде, что и уравнения классической механики (гейзенберговское представление в квантовой механике), если заменить физические величины, входящие в уравнения классической механики, соответствующими им О. Всё различие между квантовой и классической механикой сведется тогда к различию алгебр. Поэтому О. в квантовой механике иногда называют q-числами, в отличие от с-чисел, т. е. обыкновенных чисел, с которыми имеет дело классическая механика.

О. можно не только умножать, но и возводить в степень, образовывать из них ряды и рассматривать функции от О. Произведение эрмитовых О. в общем случае не является эрмитовым. В квантовой механике используются и неэрмитовы О., важным классом которых являются унитарные операторы (См. Унитарный оператор). Унитарные О. не меняют норм ("длин") векторов и "углов" между ними. Неизменность нормы вектора состояния даёт возможность интерпретации его компонент как амплитуд вероятности равным образом в исходной и преобразованной функции. Поэтому действием унитарного О. описывается развитие квантовомеханической системы во времени, а также её смещение как целого в пространстве, поворот, зеркальное отражение и др. Выполняемые унитарными О. преобразования (унитарные преобразования) играют в квантовой механике такую же роль, какую в классической механике играют канонические преобразования (см. Механики уравнения канонические).

В квантовой механике применяется также О. комплексного сопряжения, не являющийся линейным. Произведение такого О. на унитарный О. называются антиунитарным О. Антиунитарные О. описывают преобразование обращения времени (См. Обращение времени) и некоторые др.

В теории квантовых систем, состоящих из тождественных частиц, широко применяется метод квантования вторичного (См. Квантование вторичное), в котором рассматриваются состояния с неопределённым или переменным числом частиц и вводятся О., действие которых на вектор состояния с данным числом частиц приводит к вектору состояния с измененным на единицу числом частиц (О. рождения и поглощения частиц). О. рождения или поглощения частицы в данной точке х, (х) формально подобен волновой функции ψ(х), как q- и с-числа, отвечающие одной и той же физической величине соответственно в квантовой и классической механике. Такие О. образуют квантованные поля, играющие фундаментальную роль в релятивистских квантовых теориях (квантовой электродинамике, теории элементарных частиц; см. Квантовая теория поля).

В. Б. Берестецкий.

Фредгольмов оператор         
Фредгольмов оператор, или нётеров оператор, — это линейный оператор между векторными пространствами (обычно бесконечной размерности), у которого ядро и коядро конечномерны. Иначе говоря, пусть X, Y — векторные пространства.
Оператор (математика)         
НЕКОТОРЫЙ КЛАСС ОТОБРАЖЕНИЙ В МАТЕМАТИКЕ
Тождественный оператор; Операторы; Нулевой оператор
Опера́тор ( — работник, исполнитель, от  — работаю, действую) — математическое отображение между множествами, в котором каждое из них наделено какой-либо дополнительной структурой (порядком, топологией, алгебраическими операциями). Понятие оператора используется в различных разделах математики для отличия от другого рода отображений (главным образом, числовых функций); точное значение зависит от контекста, например в функциональном анализе под операторами понимают отображения, ставящие в соответствие функции другую функцию («оператор на простран�
Оператор Прюитт         
Оператор Прюитт () — метод выделения границ в обработке изображений, который вычисляет максимальный отклик на множестве ядер свёртки для нахождения локальной ориентации границы в каждом пикселе. Создан Джудит Прюитт () для обнаружения границ медицинских изображенийSamuel J. Dwyer III. A personalized view of the history of PACS in the USA. In: Proceedings of the SPIE, «Medical Imaging 2000: PACS Design and Evaluation: Engineering and Clinical Issues», edited by G. James Blaine and Eliot L. Siegel. 2000;3980:2-9.Компьютерная обработка и распознавание изображений: Учебное пособие.
Компактный оператор         
Компа́ктный опера́тор — понятие функционального анализа. Компактные операторы естественно возникают при изучении интегральных уравнений, а их свойства схожи со свойствами операторов в конечномерных пространствах. Компактные операторы также часто называют вполне непрерывными.
Линейный непрерывный оператор         
Линейный непрерывный оператор A:X\rightarrow Y, действующий из линейного топологического пространства  в линейное топологическое пространство  — это линейное отображение из  в , обладающее свойством непрерывности.

Википедия

Эрмитов оператор

В математике оператор A {\displaystyle A} в комплексном или действительном гильбертовом пространстве H {\displaystyle {\mathfrak {H}}} называется эрмитовым, симметрическим, если он удовлетворяет равенству ( A x , y ) = ( x , A y ) {\displaystyle (Ax,y)=(x,Ay)} для всех x , y {\displaystyle x,y} из области определения A {\displaystyle A} . Здесь и далее полагается, что ( x , y ) {\displaystyle (x,y)}  — скалярное произведение в H {\displaystyle {\mathfrak {H}}} . Название дано в честь французского математика Шарля Эрмита.

Оператор в H {\displaystyle {\mathfrak {H}}} называется самосопряжённым, или гипермаксимальным эрмитовым, если он совпадает со своим сопряжённым.

Самосопряжённый оператор является симметрическим; обратное, вообще говоря, не верно. Для непрерывных операторов, определённых на всём пространстве, понятия симметрический и самосопряжённый совпадают.